UNSTEADY HEAT TRANSFER BETWEENA DENSE SLAB
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A solution is found for the unsteady problem of heat transfer between a dense slab of dig-
perse material and an object within this slab for the case of boundary conditions of the
fourth kind. The calculated results are compared with experiment.

In studies of unsteady heat transfer between a dense slab of a disperse material and an object within
the slab, the temperature at the surface of the object is usually assumed to be constant over time (see, e.g.,
1-4]).

In several situations, however, heating or cooling of the object in the disperse medium is significant,;
then the calculations of the heat fluxes and temperatures of the object must be carried out by jointly solving
the heat-conduction equations for the medium and the object. Obviously, the temperatures and heat fluxes
must be equal at the boundary between the object and the medium (these are boundary conditiong of the
fourth kind), A problem of this type was treated in [5], but for only for large values of the Fourier number
Fo. An experimental study was carried out in [6, 7]. In the parameter ranges studied, however, it was not
possible to determine how the rate of heat transfer was affected by the varying surface temperature.
Numerical calculations have also been carried out [7]; they have shown that in the case of boundary condi-
tions of the fourth kind, in contrast with the case of boundary conditions of the first kind, it is necessary to
introduce at least one more parameter, to take into account the ratio of the specific heats at constant
volume of the medium and the object.

We restrict the present analysis to heat transfer of thin objects; i.e., we neglect the temperature
changes over the cross section of the object. We also assume that the temperature drops in the slab and
the temperature level are small, so that we can neglect radiation, and we assume that all the thermal
properties are independent of the temperature.

We consider the heat exchange between an object immersed in the bed and the disperse medium. The
object is a plate of thickness &, with a thermal conductivity so high that we can neglect the temperature
drop over its cross section.

To solve this problem we use the model developed in [9]. The hyperbolic heat-conduction equation
for the one-dimensional case can be derived from two equations (see, e.g., [8]):
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Fig. 1. Calculated dependence of the dimension-
less heat flux on the dimensionless time. I-VI)
Solutions of the hyperbolic equation for the dis-
perse system for u = 0.1; 0.25; 0.5; 1; 10; and
1000, respectively; 1, 2, 3, 4, 6) solutions of the

Equation (1) is a generalized heat~transfer law
incorporating relaxation, while Eq. (2) is the heat-
balance equation.

We adopt the following boundary conditions for
a semiinfinite medium:

X, 0)=0, X>0, 3)
gX, 0)=0, X>0, 4)
ﬁ'(o’ 0) = 0: (5)
Coip aif}{_f gixo . )

Equations (5) and (6) give the conditions of con-
tact and heat exchange between the slab of disperse
material and the plate.

In terms of dimensionlegs variables, problem
(1)-(6) is

clagsical heat-conduction equation for a single- Nuie — % _Fo rﬂ , (7)
‘phase system for u = 0.1; 0.25; 0.5; 1; 10; and oYy dFo
1000, respectively. e dNu @)
dFo oy '
0(0, ¥y =0, Y0, 9)
0(0, 0)=1, (10)
Nu(©, Y)=0, Y>>0, (11)
00
— = Ny—o.
e 3Fo ly_s U]y (12)

Using the method of integral Laplace transforms, we find a solution of Eqs. (7)-(12) for the heat flux

at the slab—plate interface:
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A check of Eq. (13) for certain particular cases verifies the solution. Specifically, we find Nu(0, 0)

= Fo;‘/ 2 which agrees with the data of [9].
[9] for boundary conditions of the first kind:

Nu (0, Fo) = Fo; ' exp (—-

In the limit 4 — = Eq. (13) converts into an equation derived in

Fo Fo \
SFo, ) Iy (Elf, . (14)

/

The equations for (0, Fo) and Nu(0, Fo) for large values of Fo were found by taking the correspond-

ing limits in transform space; they are

Nu (0, Fo) = (nFo)—2 —p~texp (

0 (0, Fo) = exp( ma ) erfc (
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= (nFo)—1/2 exp (

erfc (VFO ) , 5)
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Fig. 2. Calculated and experimental data on unsteady heat
exchange at a plate in a dense bed of disperse material.
1-4) Experimental data for p = 0.1; 0.5; 0.7, and 3.6, re-
spectively; I~IV) solution of the hyperbolic equation for a
disperse medium with g = 0.1; 0.5; 1, and 10, respectively.

TABLE 1. Values of the Parameter u Equation (16) is the familiar solution for a plate in con-
and Geometric Dimensions of the Par- tact with a homogeneous semiinfinite medium [10].

ticles and the Wall It was shown previously [9] that the solutions of the hy-

4 mm 6. mm | . perbolic equation in the case of boundary conditions of the

first kind for the temperature and the heat flux at the boundary
0.93 0.9 l 0.5 are the same as the solution of the system of heat-conduction
505 0.32 0.1 equations for a disperse medium [11]. In terms of the present
g:gg i g:{g 8:? notation, and taking into account the smallness of the term with

the derivative of the gas temperature with regpect to the time,
we can write this system of equations and the boundary condi-
tions of the fourth kind as follows:

Fo, 09, -6, — @1’ a7)
dFo -
00,
F = =0, —0,, 18
O, av? 2 1 {18)
0,00, Y)=0,(0, Y)=0, Y>>0, (19)
0,0, 0) = 1, (20)
—u j%_i = NU"Y:O- (21)
dFo 1y=u

Using the method of integral transforms we can easily show that the solution of Egs. (17)-(21) for
@(0, Fo) and Nu(0, Fo) is the same as the solution of hyperbolic equations {(7), (8). Accordingly, to calcu-
late Nu(o, Fo) we use, not (13), but the program worked out previously for a numerical solution of system
(17)-(21). The results of these calculations, for which we assumed Foy, = 0.25 [9], are shown in Fig. 1; we
see that the dimensionless heat flux under boundary conditions of the fourth kind, even when referred to the
instantaneous reduced temperature difference, is smaller than the heat flux in the case of a constant tem-
perature at the boundary. Also shown in this figure are the corresponding curves obtained through a solu~
tion of the ordinary differential heat-conduction equation with boundary conditions of the fourth kind, with
the disperse medium treated as a homogeneous medium with certain effective properties. At the same
time, the heat flux for certain values of Fo is larger (and for certain values it is smaller) than the heat
flux in 2 homogeneous medium. These features of heat exchange at an object in a disperse medium, in-
corporating a temperature change at the surface of the object, must be taken into account in calculating
heat exchange in both a dense bed and in a fluidized bed. In the latter case, this circumstance can turn out
to be important, if the change in the surface temperature during a unit contact with the dense phase is quite
large. It is interesting to compare these results with the experimental data, The experiments of [6] were
carried out for 0.3 = u = 3.9, Fo < 5. We see {rom the calculated curves in Fig, 1 that the curves for dif-
ferent values of Fo > 5-107% become distinct at u. In this range, experiments were carried out for d = 0.39
and 0.93 mm and for 6 = 1 mm, corresponding to p = 3.9 and p =1.65. At thege values of pu, the influence
of this parameter is slight. We therefore carry out experiments with copper plates of two dimensions and
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in beds consisting of glass spheres of two sizes (Table 1). The experimental apparatus is a rectangular
column with Plexiglas walls 7 mm thick and a cross section of 175 X 48 mm. As the calorimeter we use
plates 100 x 50 x 0.32 mm and 100 X 50 x 2.18 mm in size. On one surface of the plate, in a groove pro-
vided for the purpose, there is a copper-wire heater 0.10 mm in diameter while on the other surface
there is a resistance thermometer (copper wire, 0.02 mm in diameter). The calorimeter is placed along
the axis of the large sides of the column at the lower part of the apparatus. In the experiments, the dis-
perse material in the column is in contact with a preheated calorimeter, and the cooling process is moni-
tored. '

The experimental procedure and the procedure for analyzing the experimental data are described,
along with the schematic circuit of the electrical measurements, in [4, 12],

The experimental results are compared with the calculated curves in Fig. 2. We see that the ex~
perimental and calculated data agree satisfactorily, justifying the use of the present model for describing
heat transfer in a disperse medium under boundary conditions of the fourth kind., These results also show
that the influence of the parameter ¢ must be taken into account in a study of heat exchange of objects im-
mersed in a bed,

NOTATION
q is the heat flux;
CoPyg is the volume specific heat of wall;
Cp(1l—-¢) ig the volume specific heat of disperse system;
X is the coordinate;
Y = X/d is the dimensionless coordinate;
d is the particle diameter;
g is the porosity;
g is the temperature;
& is the integration variable;
® is the dimensionless temperature;
T is the time;
Ty is the relaxation time;
o] is the heat-transfer coefficient for the slab of disperse material and the surface;
A is the thermal conductivity;
Nu = ad/A is the Nusselt number;
Fo = AM1/Cp(l—e)d? is the Fourier number;
Foyp is the dimensionless relaxation time;
o] is the plate thickness;
u= Copoé/ZCp(l—s)d is the dimensionless parameter.
Indices
1 is the solid phase.
2 is the gas phase,
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